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Abstract— Automated detection of blood vessel structures is
becoming a crucial interest for better management of vascular
disease. In this paper, we propose an algorithm for vessel
segmentation in digital retinal images based on integral channel
features and random forests. In the first stage, preprocessing
is performed to obtain the candidate pixels of vessels, then a
host of simple features are extracted for each candidate pixels
based on integral channels. Furthermore random forests is
used to classify the candidate pixels as vessels or not. Finally,
postprocessing is applied to fill pixel gaps in classified blood
vessels. The proposed algorithm achieves an average accuracy
of 0.9614, 0.9588, sensitivity of 0.7191, 0.6996 and specificity
of 0.9849, 0.9787 on two public databases DRIVE and STARE
respectively.

I. INTRODUCTION

ANALYSIS of the retinal blood vessels from fundus

images has been widely used by medical community for

diagnosing complications due to hypertension, arterioscle-

rosis, cardiovascular disease, glaucoma, stroke and diabetic

retinopathy[1]. However, as the increasing of the patients with

eye diseases, the number of ophthalmologists needed for

evaluation by direct examination becomes a huge limiting

factor for hospitals. As a result, an automated blood vessels

segmentation algorithm is desired.

Many vessel segmentation algorithms have been intro-

duced in the literatures, which can be divided into 7 cat-

egories: 1) pattern recognition techniques[4,8,9], 2) matched

filtering[26,27], 3) vessel tracking / tracing[28], 4) mathe-

matical morphology[16,29], 5) multi-scale approaches[30,31],

6) model based approaches[18,20] and 7) parallel / hard-

ware based approaches[2]. The pattern recognition techniques

can be further divided into two subcategories: supervised

approaches and unsupervised approaches. Since supervised

methods are designed based on pre-classified data, their per-

formance is usually better than that of unsupervised ones[2].

Therefore, supervised methods for vessel segmentation is

utilized most frequently among these methods.

The performance of supervised method is determined by

two key factors: the learning algorithm and the feature
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representation. For vessel segmentation, many researchers

utilized off-the-shelf learning algorithms directly and poured

attention into the design of feature representation. For ex-

ample, in [3], E. Ricci et al. employed two orthogonal line

detectors along with the grey level of the target pixel to

construct a feature vector for supervised classification using

support vector machine. D. Marin et al. [4] computed a 7-D

vector composed of gray-level and moment invariants-based

features for pixel representation and used a neural network

scheme for pixel classification. S. Roychowdhury et al. [1]

employed a classifier of gaussian mixture model using a set

of 8 features that are extracted based on the neighborhood

of the pixel and its first and second-order gradients for pixel

classification.

Although promising performance can be achieved using

hand-tuned features, the disadvantages of hand-tuned features

are obvious, such as, requiring expert knowledge, being time-

consuming and difficult to be generalized to other domains.

To alleviate the burden of manual feature design for

vessel segmentation, we propose an algorithm based on

integral channel features and random forests in this paper.

The inspiration of the proposed method comes from [5],

where integral channel features are computed using linear

and non-linear transformations of the input image. Since

the transformations are simple, the human effort on feature

design is minimized. To represent the target pixel, we use

a small patch which centers on the target pixel to construct

a feature vector on each channel. Thus, abundant features

for each pixel can be obtained. To avoid the process of

feature selection, random forests, which deals well with high

dimensional data, is chosen as the classifier in this work.

The proposed algorithm has been evaluated on the publicly

available STARE[6] and DRIVE[7] databases. The averagely

obtained values (sensitivity of 0.7191, specificity of 0.9849,

accuracy of 0.9614 on DRIVE database, and 0.6996, 0.9787,

0.9588 on STARE database) show that the proposed method

is an effective tool for vessel segmentation. The experimen-

tal results also demonstrate that the proposed method is

very competitive with the state-of-the-art methods, such as

[3,4,6,8,9].

The rest of this paper is organized as follows: Section II

describes the public databases used in this study. Section

III explains and illustrates the proposed method for vessel

segmentation. Section IV shows the experimental results

obtained using the public databases, and a comparison s-

tudy with other methods from the literatures. We provide

discussions and conclusions in Section V.
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II. PUBLIC DATABASES

In order to evaluate the vessel segmentation methodology,

two publicly available databases containing retinal images,

the DRIVE[7] and STARE[6] databases, were used. These two

databases have been widely used by other researchers to test

their vessel segmentation methodologies since they provide

manual segmentations for performance evaluation.

The DRIVE database comprises 40 eye-fundus color im-

ages captured in digital form from a Canon CR5 nonmy-

driatic 3CCD camera at 45 field of view. The images are

of size 768 × 584 pixels, 8 bits per color channel and

have a field of view (FOV) of approximately 540 pixels

in diameter. The database is divided into two sets: a test

set and a training set, each of them containing 20 images.

The test set provides the corresponding FOV masks for the

images, in which two manual segmentations are generated

by two different specialists for each image. The selection

of the first observer is accepted as a ground truth and used

for performance evaluation of algorithms in literature. The

training set also includes the FOV masks for the images and

a set of manual segmentations made by the first observer.

The STARE database comprises 20 eye-fundus color im-

ages captured with a TopCon TRV-50 fundus camera at 45◦

FOV. The images were digitalized to 700×605 pixels, 8 bits

per color channel and are available in PPM[33] format. The

database contains two sets of manual segmentations made

by two different observers. Performance is computed with

segmentations of the first observer as ground truth.

Fig. 1. Overall architecture of vessel segmentation

III. METHOD

In this paper, a new supervised approach is proposed for

blood vessel segmentation based on integral channel features

and random forests. The proposed method mainly consists

of the following process stages: 1) original fundus image

preprocessing to obtain candidate pixels which may belong

to vessels, 2) feature extraction for each candidate pixel,

3) application of a classifier to label the pixel as vessel

or non-vessel, 4) postprocessing for filling pixel gaps in

detected blood vessels. The architecture of our process stages

is summarized in Fig.1.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of preprocessing process: (a) Green channel of the
original image Ig . (b) Vessel-background enhanced image ICI . (c) Image
after removing vessel central light reflex IR (d) Homogenized image IH .
(e) Vessel-enhanced image IV E . (f) Vessel-candidates image Icand.

A. Preprocessing

To reduce the burden of the classifier, the candidate

pixels, which may belong to the vessels, are extracted first.

Extraction of candidate pixels can be done by the following

steps:

First, the green plane of the image Ig [Fig.2.(a)] is

processed by applying local histogram equalization with 64

tiles. ICI [Fig.2.(b)] denotes the resultant image for future

references.

Secondly, the image ICI is filtered by applying a morpho-

logical opening using a three-pixel diameter disc aiming to

remove the vessel central light reflex. IR [Fig.2.(c)] repre-

sents the image after removing vessel central light reflex.

Next, with the purpose of removing the background

lightening variations, the homogenized image IH [Fig.2.(d)]

is produced according to the following gray-level global

transformation function

IH =

⎧⎨
⎩

0 if Ig < 0
255 if Ig > 255
Ig otherwise

(1)

where

ISC = IR − IB (2)

Ig = ISC + 128− ISC Max (3)

The variable denoted by IB is produced by applying a

69×69 mean filter mean filter. ISC represents the difference

bwtween IR and IB and ISC Max defines the highest number

of pixels in ISC

Furthermore, a new vessel-enhanced image IV E [Fig.2.(e)]

is produced by estimating the complementary image of the

homogenized image IH , IcH , and subsequently applying the

morphological Top-Hat transformation

IV E = IcH − γ(IcH) (4)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Computed image channels:(a) Red plane of the image after
applying local histogram equalization. (b) Green plane of the image after
applying local histogram equalization. (c) Blue plane of the image after
applying local histogram equalization. (d) Preprocessing image without
local histogram equalization. (e) Preprocessing image with local histogram
equalization. (f) Gradient magnitude of the image with 5 normalization
radius. (g) Gradient magnitude of the image with 10 normalization radius.
(h) Gradient magnitude of the image with 15 normalization radius. (i)
Gradient magnitude of the image with 20 normalization radius.

where γ is a morphological opening operation using a disc

of eight pixels in radius.

Finally, most of the blood vessel candidates Icand
[Fig.2.(f)] are selected with a soft threshold thcand, which is

the product of 0.3 (chosen by empirical study) and the global

threshold obtained by using Otsus method[32].

B. Feature Extraction

The aim of the feature extraction stage is pixel characteri-

zation by means of a feature vector, a pixel representation in

terms of some quantifiable measurements which will be used

in the classification stage to decide whether a pixel belongs

to a real blood vessel or not.

Regarding supervised methods [1,3,4,8,9], lots of different

features are designed manually. These features are a culmi-

nation of years of effort, and are proven to be effective for

vessel segmentation in fundus images. Nevertheless, in this

paper, we utilize a simple way to extract features for each

candidate pixel. Surprisingly, the competitive results obtained

by the proposed method illustrate that such a simple method

is effective. The inspiration of the method comes from [5],

where integral channel features are presented.

The idea behind integral channel features is that multiple

registered image channels are computed using linear and

non-linear transformations of the input image, and then the

(a) (b) (c)

Fig. 4. (a) Vessel-candidates image. (b) Classified image. (c) Postpro-
cessing image.

features such as local sums, histograms, and Haar features

and their various generalizations are efficiently computed

using integral images [5]. In this paper, we employ the

integral channels, and then patch-based method is applied

to extract abundant features for each candidate pixel.

1) Transform of Multiple Registered Image Channels:
Multiple registered image channels are computed using linear

and non-linear transformations of the input image. In this

paper, the computed image channels are listed as follows:

• Enhanced RGB Color Channels: Three color channels,

red, green and blue channel, are utilized at first. Each

color channel is processed by applying local histogram

equalization whose number of tiles is equal to 64 in

order to enhance the contrast of vessel and background,

which generates a more suitable channel for further

features extraction. Enhanced RGB color channels are

shown in Fig.3. (a), (b) and (c).

• Preprocessed Image Channels: Since preprocessed

images reduce the imperfections of color fundus

images, they are fixed to extract informative features.

Thus two processing images, where one is applied by

local histogram equalization(LHE) with 64 tiles and one

without LHE, are utilized in our work. Preprocessing

image channels are shown in Fig.3. (d) and (e).

• Gradient Magnitude Channels: Gradient magnitude

channel can capture unoriented edge strength[5]. The

gradient is computed on the red, green and blue col-

or channels separately and the maximum response is

chosen[10]. In this work gradients are computed at

normalization radius 5, 10, 15 and 20. Fig.3. (f), (g) and

(h), (i), show the gradient magnitude channels.

2) Channel Feature Extraction: After transforming mul-

tiple image channels, channel features are extracted at 9

integral image channels, calculated over an image patch with

size m× n pixels. For each pixel representation, m× n× 9
generic features are obtained. It is notable that there is no

need to optimize the feature set in this work.

C. Classification

In the classification stage, since random forests[11−12] can

deal with large amounts of high dimensional data rapidly,

it is applied to assign one of the classes Y1(vessel) or

Y2(nonvessel) to each candidate pixel.
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Table I The experimental results of parameter setting on DRIVE database

The path size Utilized feature numbers of each node in random forests The number of trees Se Sp Acc

12 20 0.7005 0.9860 0.9608

12 5 0.7007 0.9855 0.9604

12 10 0.6999 0.9860 0.9607

12 40 0.6986 0.9862 0.9608

4 × 4 12 80 0.6975 0.9864 0.9609

3 20 0.6249 0.9867 0.9550

6 20 0.6721 0.9867 0.9590

24 20 0.7141 0.9847 0.9608

48 20 0.7166 0.9844 0.9607

24 20 0.7128 0.9855 0.9614

24 5 0.7264 0.9823 0.9597

24 10 0.7187 0.9842 0.9608

24 40 0.7080 0.9862 0.9616

8 × 8 24 80 0.7037 0.9865 0.9616

6 20 0.6438 0.9872 0.9570

12 20 0.6950 0.9867 0.9610

48 20 0.7165 0.9852 0.9615

96 20 0.7191 0.9849 0.9614

48 20 0.7085 0.9858 0.9613

48 5 0.7261 0.9820 0.9594

48 10 0.7172 0.9843 0.9607

48 40 0.7024 0.9866 0.9615

16 × 16 48 80 0.6966 0.9870 0.9614

12 20 0.6789 0.9866 0.9595

24 20 0.7019 0.9859 0.9608

96 20 0.7123 0.9856 0.9615

192 20 0.7160 0.9852 0.9615

Random forests(RF) are ensembles of m binary decision

trees ft(x): X → Y , where X = Rn is n-dimensional

feature space and Y = {Y 1 = 1, Y 2 = 0} describes the

label space1.

During testing, each decision tree returns a class label

probability distribution pt(y|x) for a given test sample x,

and the final class label y∗ is calculated via

y∗ = argmax
y

1

m

m∑
t=1

pt(y|x) (5)

During training the decision trees are provided with training

data T = (xi, yi)
N
i=1, where N is the number of training

examples, and all trees are trained independently. To train a

single decision tree, the parameters Θ of a splitting function

Φ(x,Θ) =

{
0 if rΘ(x) < 0
1 otherwise

(6)

have to be estimated, which separates the data into two

disjoint sets. In (6), rΘ(x) → R calculates a response of

the feature vector x. The quality of a given splitting function

Φ is typically defined as

I(Θ) =
|L|

|L|+ |R|H(L) +
|R|

|L|+ |R|H(R) (7)

where L = {x : Φ(x,Θ) = 0}, R = {x : Φ(x,Θ) = 1},

| · | denotes the size of a set, and H(·) measures the purity

of a set of training examples in terms of class labels. The

1Please note that we only consider the binary case here as our application
is binary object detection. In general, RF are inherently multi-class.

purity H(·) is typically calculated via the entropy or the Gini

index[11].

The standard procedure in Random Forests for finding

a good splitting function in a single node is to randomly

sample a set of parameters {Θj}kj=1 and simply choosing

the best one, Θ∗, by evaluating (7). This splitting function

is then fixed, and the trees continues growing until some

stop criteria, such as a maximum tree depth or a minimum

numbers of samples in the node, are reached.

The classified image corresponding to a vessel candidate

image [Fig.4.(a)] is shown in Fig.4.(b).

D. Postprocessing

From visual inspection of the image in Fig.4.(b), the

vessels still have a few gaps. To overcome this problem, the

detected image is filtered by a morphological opening using

a three-pixel diameter diamond. The final image after this

post processing is shown in Fig.4.(c).

IV. EXPERIMENTAL RESULTS

A. Parameter setting

The proposed algorithm was evaluated in terms of sensitiv-

ity (Se), specificity (Sp) and accuracy (Acc). Let TP means

true positive, TN true negative, FP false positive and FN false

negative. These metrics are defined as:

Se = TP/(TP + FN) (8)

Sp = TN/(TN + FP ) (9)

Acc = (TP + TN)/(TP + TN + FP + FN) (10)
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Se and Sp metrics are the ratio of well-classified vessel

to nonvessel pixels, respectively. Acc is a global measure

providing the ratio of well-classified pixels to all pixels.

In our work, three crucial parameters, patch size, number

of utilized features of each node in RF and number of

trees, need to design carefully. To evaluate the effects of

the parameters for the algorithm, we tested the algorithm on

the DRIVE database, in which test set and training set are

separated. The experimental results of parameter setting are

shown in Table I. It can be observed that when the patch size

and the number of trees are fixed, increasing the number of

utilized features of each node in RF improves the Se and Acc,

but deteriorates Sp. When the patch size and the number of

utilized features of each node in RF are fixed, increasing the

number of trees improves the Sp and Acc, but deteriorates

Se.

To facilitate the validation of the proposed method on

STARE databases and comparing it with other algorithms, we

fixed all parameters before testing. According to the analysis

of Table I, the patch size as 8 × 8, the number of utilized

features of each node as 96 and number of trees as 20 are

the good choices, neither too small to lose the performance

nor too large to increase the unnecessary computation. The

performance results are shown in Table II and Table III.

Note that there are no specified training images for STARE

database, thus we utilized the classifier trained on DRIVR

training images to test the method on STARE images.

B. Comparison to other methods

Through previous experiments the proposed method has

been demonstrated to be effective and efficient for vessel

segmentation. In order to emphasize the effectiveness of our

method, we compare our model with other existing state-

of-the-art vessel detection methods on the two most popu-

lar public databases: the DRIVE database and the STARE

database. Table IV and Table V show the performance com-

parison of our method and the others on both the DRIVE and

STARE databases in terms of Se, Sp and Acc, respectively,

with the following published methods: Ricci et al.[3], Marin

et al.[4], Hoover et al.[6], Niemeijier et al.[7], Soares et
al.[8], Staal et al.[9], Orlando et al.[13], Wang et al.[14],

Lupascu et al.[15], Fraz et al.[16], Zana et al.[17], Al-

Diri et al.[18], Budai et al.[19], Lam et al.[20], Nguyen

et al.[21], You et al.[22], Mendonca et al.[23], Perez et
al.[24], Jiang et al.[25]. The values shown in each table are

presented for each database as reported by their authors. If

they are not available for a specific database or not calculated

for the 20 images selected for testing, they were not included

in the tables, thus appearing as gaps.

From Table IV, we observe that the proposed vessel

segmentation algorithm out performs other existing methods

on the DRIVE test data set in terms of segmentation Acc,

and Sp = 0.985, which is only 0.002 lower than the

method proposed by Budai et al.[19]. Although one of the

supervised method [13] has a higher sensitivity, it has a much

lower specificity than most of the other methods. Similarly,

from Table V, the proposed method proves useful for vessel

Table II Performance results on DRIVE database images

Image Se Sp Acc

1 0.7918 0.9803 0.9634

2 0.7792 0.9852 0.9641

3 0.6379 0.9914 0.9561

4 0.7293 0.9880 0.9642

5 0.6608 0.9909 0.9599

6 0.6242 0.9919 0.9561

7 0.7279 0.9804 0.9573

8 0.6440 0.9881 0.9585

9 0.5856 0.9939 0.9609

10 0.7112 0.9867 0.9640

11 0.7502 0.9790 0.9585

12 0.7412 0.9853 0.9642

13 0.6877 0.9879 0.9585

14 0.7835 0.9772 0.9616

15 0.8089 0.9682 0.9568

16 0.7115 0.9872 0.9623

17 0.6666 0.9890 0.9618

18 0.7449 0.9827 0.9638

19 0.8335 0.9818 0.9695

20 0.7620 0.9834 0.9671

Average 0.7191 0.9849 0.9614

Table III Performance results on STARE database images

Image Se Sp Acc

1 0.5835 0.9859 0.9538

2 0.5646 0.9881 0.9599

3 0.7884 0.9661 0.9554

4 0.2607 0.9972 0.9426

5 0.8176 0.9550 0.9426

6 0.8423 0.9675 0.9588

7 0.9017 0.9579 0.9534

8 0.9028 0.9646 0.9600

9 0.7879 0.9846 0.9691

10 0.7968 0.9608 0.9476

11 0.8276 0.9785 0.9678

12 0.8597 0.9795 0.9703

13 0.8117 0.9764 0.9618

14 0.8248 0.9778 0.9640

15 0.7838 0.9794 0.9625

16 0.6111 0.9874 0.9490

17 0.8377 0.9782 0.9656

18 0.6444 0.9946 0.9769

19 0.2926 0.9978 0.9674

20 0.2529 0.9967 0.9470

Average 0.6996 0.9787 0.9588

Table IV Performance comparison of vessel segmentation methods on
DRIVE database

Method Type Methods Se Sp Acc

Niemeijier et al.[7] – – 0.942

Staal et al.[9] – – 0.944

Orlando et al.[13] 0.785 0.967 –

Wang et al.[14] – – 0.946

Supervised Lupascu et al.[15] 0.720 – 0.960

Marin et al.[4] 0.707 0.980 0.945

Ricci et al.[3] – – 0.960

Fraz et al.[2] 0.741 0.981 0.948

Proposed Method 0.719 0.985 0.961

Zana et al.[17] 0.697 – 0.938

Al-Diri et al.[18] 0.728 0.955 –

Other Budai et al.[19] 0.644 0.987 0.957

Fraz et al.[16] 0.715 0.976 0.943

Lam et al.[20] – – 0.947

Nguyen et al.[21] – – 0.941
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Table V Performance comparison of vessel segmentation methods on
STARE database

Method Type Methods Se Sp Acc

Staal et al.[9] – – 0.952

Soares et al.[8] 0.721 0.975 0.946

Ricci et al.[3] – – 0.952

Supervised Marin et al.[4] 0.694 0.982 0.953

Wang et al.[14] – – 0.952

You et al.[22] 0.726 0.975 0.949

Proposed Method 0.700 0.979 0.959

Mendonca et al.[23] 0.699 0.973 0.944

Fraz et al.[16] 0.731 0.968 0.944

Nguyen et al.[21] – – 0.932

Other Al-Diri et al.[18] 0.752 0.968 –

Perez et al.[24] 0.769 0.944 0.926

Lam et al.[20] – – 0.947

Hoover et al.[6] 0.675 0.957 0.926

Jiang et al.[25] – – 0.901

detection in STARE images. Its application to this database

results in the highest accuracy score and the second highest

specificity score among all methods(only behind Marin’s

approach [4]).

V. DISCUSSION AND CONCLUSION

In this paper, we propose a new supervised retinal blood

vessel segmentation method, which is based on integral

channel features and random forests. With the aim of min-

imizing the human effort of designing and implementing

features, integral channel features are extracted from multiple

registered image channels, which are computed using linear

and non-linear transformations of the input image. Then

random forests is applied to label the pixels as vessel or

non-vessel. The results(Se of 0.7190, Acc of 0.9850 and Sp

of 0.9610 on DRIVE database, Se of 0.700, Acc of 0.9790

and Sp of 0.9590 on STARE database) manifest that the

method is effective for vessel segmentation. Next we plan to

apply our method to other biomedical images, e.g. membrane

segmentation.
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